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PROSPECTS
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Abstract HIV-1 gene expression relies upon a complex machinery that is primarily controlled by two viral
regulatory proteins, Tat and Rev. Rev is involved in regulating post-transcriptional events of HIV-1 gene expression. The
Tat protein transactivates transcription from the HIV-1 5’ long terminal repeat (LTR) and acts in synergy with specific
cellular factors. Recently, it has been shown that one set of these cellular factors is a protein kinase activity termed TAK
(Tat-associated kinase), which activates transcription by hyperphosphorylation of the carboxyl-terminal domain (CTD)
of the large subunit of RNA polymerase Il. TAK also enhances transcription of HIV-2, together with the retroviral
transactivator, Tat-2. The TAK activity appears to be related to the CTD kinase P-TEFb, which stabilizes transcription
elongation of many genes and was originally isolated from Drosophila extracts. Both TAK and P-TEFb contain at least
two subunits: the cyclin-dependent kinase, CDK9 (PITALRE), the catalytic subunit, and the regulatory subunit, cyclin T1.
CDK9 and cyclin T1 are ubiquitous factors that affects many cellular processes, including cell differentiation and
apoptosis. The involvement of TAK in HIV-1 and HIV-2 gene expression is an important aspect in the biology of these
two retroviruses, and may lead to the development of novel antiretroviral drugs and/or gene therapy approaches for the

treatment of patients with AIDS. J. Cell. Biochem. 75:357-368, 1999.
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There is a growing interest in developing
novel therapeutic approaches to treat patients
with the acquired immunodeficiency syndrome
(AIDS). Indeed, the efficacy of antiretroviral
therapies has remarkably improved in estab-
lishing a long-term suppression of human im-
munodeficiency virus type 1 (HIV-1) replica-
tion. This is clearly shown by the increased
average survival period of patients with AIDS
[Carpenter et al., 1997; Cavert et al., 1997,
Gulick et al., 1997; Hammer et al., 1997; Palella
et al., 1998; Wong et al., 1997], and by the
substantial decline of the AIDS death rate dur-
ing the last three years in industrialized coun-
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tries [Global programme on AIDS, 1995]. To
date, 11 antiretroviral compounds are cur-
rently used in AIDS therapy, however, they only
target two viral enzymes: the reverse transcrip-
tase and the protease [reviewed by Romano et
al., 1998]. These drugs are more effective if
administered in combination to patients, as
they can delay the emergence of HIV-1 strains
resistant to antiretroviral therapy [Gulick et
al., 1997; Hammer et al., 1997; Foundraine et
al., 1998; Weverling et al., 1998]. However, the
onset of AIDS in patients is only a matter of
time, as HIV-1 continues to mutate while repli-
cating at high rates in the host over the entire
course of infection [Embretson et al., 1993; Ho
et al., 1995; Mansky et al., 1995; Nowak et al.,
1991; Pantaleo et al., 1993; Wei et al., 1995],
and may generate viral variants resistant to
multidrug therapy. This event will result in
acute syndrome and death of the patients. In
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addition, this represents a serious threat to the
recent achievements in AIDS research and
therapy programs. Worryingly, there has al-
ready been a number of reports of transmission
of HIV-1 strains resistant to multidrug therapy
[Angarano et al., 1994; Conlon et al., 1994;
Erice et al., 1993; Hechts et al., 1998; Imrie et
al., 1997; Ippolito et al., 1994; Veenstra et al.,
1995]. The report by Hechts et al. [1998] raises
additional concern, as the HIV-1 variant that
was transmitted was resistant to both reverse
transcriptase and to protease inhibitors. On
these grounds it is essential to broaden the
spectrum of therapeutics for the treatment of
patients with AIDS. In this respect the HIV-1
accessory proteins (Vif, Vpr, Vpu, and Nef), the
regulatory proteins (Tat and Rev), and the viral
integrase are very attractive targets. This task
now seems more feasible, if one considers the
progress that has recently been achieved in
understanding the biology and the pathogen-
esis of HIV-1 [Romano et al., 1998], which causes
a wide variety of illnesses, such as: neurologic
disorders, development of opportunistic dis-
eases, onset of AIDS-related malignancies and
higher incidence of other types of neoplasias,
nephropathies, anemia, and cardiopathies.

The field of AIDS research is evaluating a
variety of new therapeutic interventions. These
include the production of chemokine-like mol-
ecules to inhibit viral infection; the generation
of novel antiretroviral drugs to target other
HIV-1 factors, in addition to the reverse trans-
criptase and protease; the development of gene
therapy and of vaccines programs. The final
aim of these new therapy programs is to eradi-
cate HIV-1 from patients. In order to do so, it is
also necessary to suppress HIV-1 in cells which
are latently infected (quiescent T cells and pro-
monocytes), and in parts of the body that are
hard to reach, such as the central nervous sys-
tem (CNS).

Among the various significant discoveries in
the area of HIV-1 biology, the recent finding
that the Tat associated kinase activity (TAK) is
involved in the Tat transactivation pathway is
of considerable interest [Cullen et al., 1998;
Emerman and Malim, 1998; Jones, 1997]. Inter-
estingly, TAK also contrives with Tat-2 in trans-
activating transcription from the HIV-2 5’-LTR
[Herrmann and Rice, 1993; Yang et al., 1996].
The involvement of TAK in the Tat-mediated
transactivation of HIV-1 and HIV-2 transcrip-
tion will inevitably lead to greater understand-

ing of viral gene expression, along with many
other aspects of the biology of these two retrovi-
ruses, including the mechanism of gene regula-
tion in latently infected cells. Two components
of the TAK complex have been recently identi-
fied and are structurally related to critical cell
cycle regulatory molecules. These cellular com-
ponents comprise CDK9, a CDC2-related serine/
threonine kinase, and its activating subunit,
cyclin T1. While these molecules themselves
are not involved in regulating the cell cycle,
perhaps the information gained regarding these
proteins may also result in therapeutic applica-
tions in the future. Indeed, some preliminary
reports have shown an in vitro suppression of
TAK transactivation by certain chemical inhibi-
tors that target serine/threonine kinases
[Mancebo et al., 1997]. Similar results were
obtained in in vivo studies expressing a kinase
inactive form of CDK9 [Mancebo et al., 1997;
Gold et al., 1998], although the inhibitory ef-
fects of the mutant form on Tat protein function
may be restricted to specific cell lines [Gold et
al., 1998]. Taken together, these findings under-
line once more the relevance of TAK activity in
HIV-1 and HIV-2 gene expression, and encour-
age the pursuit of research programs to develop
novel antiretroviral inhibitors and/or gene-
based therapy programs for the treatment of
patients with AIDS.

The Essential Role of Tat
Protein in the Biology of HIV-1

The optimization of transcription levels is a
key factor for the replication of HIV-1 and HIV-2,
both of which encode for two closely related
transactivator proteins named Tat-1 and Tat-2,
respectively [reviewed by Jones and Peterlin,
1994]. For the sake of simplicity, and consider-
ing that HIV-1 and HIV-2 have a very similar
biology, this review will focus on HIV-1 and
Tat-1 will be referred to as Tat.

The genomic organization of HIV-1 is rather
complex (Fig. 1), and has a size of 9.8 kb [Greene,
1991; Vaishnav and Wong-Staal, 1992]. In addi-
tion to the gag, pol, and envelope (env) genes,
there are at least six other open reading frames
(ORF) encoding for four accessory proteins (Vif,
Vpr, Vpu, and Nef) and two regulatory proteins
(Tat and Rev). The 5'- and the 3'-LTR contain
the signals for integration into the cell’s chromo-
somal DNA, for reverse transcription (the
primer binding site for transfer RNA), the pack-
aging signal (V) in the untranslated 5'-mRNA
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Fig. 1. The genome of HIV-1. LTR, long terminal repeat; TAR, transactivation response RNA element; ¥, packaging

signal; env, envelope; RRE, rev-response-element.

[Lever et al., 1989], and the polyadenylation
signal in the 3'-LTR.

The primary transcript is the full-length vi-
ral mRNA, which is translated into the Gag and
Pol proteins. Other HIV-1 proteins, such as Tat,
Rev, Env, Vif, Vpr, Vpu, and Nef, originate from
the translation of subgenomic mRNAs derived
from different splicing events. The HIV-1 mRNA
splicing pathway is orchestrated by the Rev
protein, which is itself the product of spliced
mRNA [Feinberg et al., 1986; Sodroski et al.,
1986; Steffi et al., 1992]. The Rev and Tat pro-
teins share a number of similarities, as they
both bind to HIV-1 mRNA via a distinct small
basic region [reviewed by Jones and Peterlin,
1994; Cullen, 1994]. The structure of the HIV-1
RNA-binding domain of Tat is shown in Figure
2A. The HIV-1 RNA motif recognized by the Rev
protein is termed the rev-response-element (or
RRE, see Fig. 1) [reviewed by Cullen, 1994].
The Tat protein activates transcription by bind-
ing to the transactivation response (TAR) RNA
element (Fig. 2B), which is situated at the 5'-
end of nascent retroviral transcripts [Rosen et
al., 1985; Jakobovits et al., 1988; Garcia et al.,

1988; Selby et al., 1989]. All HIV-1 mRNAs
contain both RRE [reviewed by Cullen, 1994]
and TAR sequences [Muesing et al., 1987].

As already mentioned, Tat is a potent trans-
activator of the HIV-1 5'-LTR, and is essential
for efficient viral replication [reviewed by Jones
and Peterlin, 1994]. An additional three cis-
acting elements of the HIV-1 5’-LTR are also
absolutely required for in vivo and in vitro Tat
transactivation: the TATA box, a binding site
for the Spl transcription factor and the TAR
RNA element [Jones and Peterlin, 1994]. The
TAR RNA sequence forms a stable stem-loop
structure [Muesing et al., 1987] that is required
for the Tat transactivation response [Berkhout
et al., 1989]. Without the Tat protein, transcrip-
tion from the HIV-1 5’-LTR would terminate
within the first 60 ribonucleotides [Kao et al.,
1987; Laspia et al., 1989; Feinberg, 1991; Mar-
ciniak and Sharp, 1991]. However, a number of
studies also indicate that the Tat protein in-
duces transcription activation from the HIV-1
5-LTR in a TAR-independent fashion in some
cell lines derived from the CNS [reviewed by
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Fig. 2. A: Structure of the transcriptional activation domain of HIV-1 Tat protein. ARM, arginine-rich RNA-binding
motif. B: The sequence of the RNA hairpin of the HIV-1 TAR element. Tat protein binds to the base triple of the bulge,
whereas the loop sequence is thought to interact with a Tat-coactivator complex.

Taylor and Khalili, 1994; Yang et al., 1997;
Buzy et al., 1995].

The basic patch consists of an arginine-rich
RNA-binding motif (ARM, as shown in Fig. 2A),

The transcriptional activation domain of Tat
comprises a cysteine-rich region, followed by a
hydrophobic core motif and by a basic patch.

which allows binding of Tat to the base triplet
in the bulge region of TAR (Fig. 2B) [Liu et al.,
1996; Tao et al., 1997]. The base triplet struc-
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ture in the bulge derives from Hoogstein inter-
action between U23 and AU27 in the upper
stem (Fig. 2B) [Tao et al., 1997]. The HIV-1 TAR
loop (Fig. 2B) appears to interact with a Tat-
coactivator complex [reviewed by Jones, 1997;
Zhou and Sharp, 1995]. Mutational analysis of
the TAR loop sequence revealed a block neces-
sary for Tat transactivation in vivo, without
affecting the Tat-TAR interaction [reviewed by
Cullen, 1990], suggesting the presence of a Tat-
dependent cellular activity specific for the TAR
loop sequence. A number of cellular proteins
have been identified and shown to interact with
the HIV-1 TAR loop sequence, however, none of
them are essential for Tat transactivation of
the HIV-1 5'-LTR [Gatignol et al., 1989; Marcin-
iak et al., 1990b; Sheline et al., 1991; Wu et al.,
1991]. TAK has also been proposed as the Tat-
cofactor specific for the HIV-1 TAR stem loop
sequence [Herrmann and Rice, 1995]. Addi-
tional cellular factors have been shown to bind
in vitro to the bulge of HIV-1 TAR [Sheline et
al., 1991], the upper stem [Gatignol et al., 1991],
the lower stem [Gunnery et al., 1992], and to a
combination of lower stem bulge and A27 of the
upper stem [Rounseiville and Kumar, 1992].
However, the biochemical functions of these
HIV-1 TAR bulge- and/or stem-binding factors
have not been completely characterized, as are
the various Tat-binding cellular proteins that
have been identified [Desai et al., 1991; Nel-
bock et al., 1990; Ohana et al., 1993]. The HIV-1
5’-LTR can also be transactivated by a number
of other viral factors including Epstein-Barr
virus (EBV) [Lin, 1993; Quinlivan et al., 1990;
Romano et al., 1997], herpes simplex virus
(HSV) [Albrecht et al., 1989; Chapman et al.,
1991], human herpesvirus 6 (HHV-6) [Geng et
al., 1992; Di Luca et al., 1991], and cytomegalo-
virus (CMV) [Davis et al., 1987].

Another pathway for transcription activation
of the HIV-1 5’-LTR is represented by the cellu-
lar factor NF-kB, which is induced by a variety
of cytokines, and is inhibited by the HIV-1 acces-
sory proteins Vpr and Nef [reviewed by Ro-
mano et al., 1998]. Interestingly, it has been
found that NF-kB is involved in the TAR-
independent Tat transactivation of the HIV-1
5-LTR in certain cell lines derived from the
CNS [Yang et al., 1997].

In vivo systems using transfected cell lines
indicate that the Tat protein stabilizes the elon-
gation of transcripts from the HIV-1 5'-LTR,
and this stimulates a modest increase of the

initiation rate [Kao et al., 1987; Laspia et al.,
1989; Feinberg et al., 1991]. In in vitro cell
extracts, however, Tat appears to only have an
effect on the processivity of HIV-1 mRNA elon-
gation [Marciniak and Sharp, 1991; Kato et al.,
1992]. Conversely, in the CNS-derived U87-MG
cell line, a cell line that supports TAR-indepen-
dent Tat transactivation of the HIV-1 5'-LTR,
the effects of the Tat protein are predominantly
on the increase of transcription initiation in a
TAR-deleted HIV-1 5'-LTR reporter construct.
With TAR-containing LTR constructs, however,
the Tat protein mediates its effects through
stabilization of RNA elongation [Yang et al.,,
1997]. These findings suggest the existence of
two alternative Tat transactivation pathways
in CNS cell lines; one TAR dependent and the
second TAR independent. In the in vitro sys-
tem, the stimulation of transcription from the
HIV-15'-LTR by Tat is in the range of a 10-fold
increase [Marciniak et al., 1990a]. In the in vivo
models, however, Tat stimulates a 100-fold acti-
vation observed in the in vivo models [Feinberg
et al., 1986; Peterlin et al., 1986; Rosen et al.,
1986; Wright et al., 1986; Hauber et al., 1987,
Muesing et al., 1987; Rice and Mathews, 1988;
Sadaie et al., 1988]. This finding strongly sug-
gests that some cellular factors involved in the
Tat transactivation pathway of HIV-1 5'-LTR
are much more effective in intact cells in vivo
than in cell-free systems. The Tat-induced in-
crease of the initiation rate of transcription
from the HIV-1 5’-LTR is too modest [reviewed
by Jones, 1997] to justify the discrepancies be-
tween the in vivo and in vitro systems. Taken
together, these findings indicate that the main
function of the Tat protein is to stabilize the
elongation of HIV-1 mRNA, and that certain
cellular factors are required to optimize Tat
transcription of the HIV-1 5’-LTR.
Interestingly, it has been observed that Tat
transactivation of the HIV-1 5’-LTR is blocked
by 5,6-dichloro-1-B-ribofurosylbenzimidazole
(DRB) [Marciniak and Sharp, 1991], which is a
purine nucleoside analog that inhibits early
transcription elongation by inactivating pro-
tein kinases [Zandomeni and Weinmann, 1984;
Zandomeni et al., 1986]. In fact, two kinase
complexes have been found to be involved in the
Tat transactivation pathway, TFIIH [Parada
and Roeder, 1996; Garcia-Martinez et al., 1997;
Cujec et al., 1997] and TAK [Herrmann and
Rice, 1993, 1995; Yang et al., 1996; Zhu et al.,
1997; Mancebo et al., 1997]. These findings can
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be considered a breakthrough in understand-
ing the transcriptional regulation mechanism
of HIV-1, although many aspects still need fur-
ther investigation. The Tat-mediated induction
of the HIV-1 5'-LTR has been shown to be a
useful model to study the mechanism of tran-
scription in eukaryotic inducible genes. In such
systems, the RNA polymerase II (RNA pol II)
complexes pause shortly after the initiation of
RNA transcription [Blair et al., 1996; Blau et
al., 1996; Bentley, 1995]. Generally, the RNA
elongation comes to a stop in the first 20 or 60
nucleotides downstream of the promoter. In the
presence of either DNA- or RNA-binding fac-
tors, the elongation of RNA transcription is
resumed. The function of these activators con-
sists of either attracting and/or stimulating
other cellular factors to rescue the stalled RNA
elongation complexes, or to remove cellular in-
hibitors of transcription.

The HIV-1 TAR-dependent transactivation by
the Tat protein is linked to the CTD of RNA
polymerase II (RNA pol II) [Chun and Jeang,
1996; Okamoto et al., 1996; Parada and Roeder,
1996; Yang et al., 1996]. The tandem heptapep-
tide repeat (YSPTSPS) in the CTD of RNA pol
II shows a differential phosphorylation pattern
during the various phases of the transcription
process [reviewed by Dahmus, 1996]. The CTD
of RNA pol IT is not phosphorylated in preinitia-
tion complexes or in RNA elongation complexes
paused at a very early stage of transcription
initiation. Conversely, processive RNA pol II
molecules have a hyperphosphorylated CTD.
The enhanced RNA pol II processivity origi-
nates from conformational changes following
the hyperphosphorylation of CTD. Hyperphos-
phorylation of the CTD is thought to release the
elongation complex from the promoter and abol-
ish interactions with other transcription fac-
tors that are not associated with elongating
RNA pol II complexes [Svejstrup et al., 1997,
Zawel et al., 1995], such as the TATA-binding
protein.

According to in vitro and in vivo data [re-
viewed by Jones, 1997], the TFIIH complex
appears to be essential to regulate promoter
clearance and the early steps of transcription
initiation [Dvir et al., 1996; Goodrich and Tjian,
1994]. The TAK complex, on the other hand, is
required to sustain RNA pol II processivity
during transcription elongation [Marshall and
Price, 1992; Marshall et al., 1996; Zhu et al.,
1997]. Several lines of evidence indicate there

is an interaction between Tat and the TFIIH
complex [Parada and Roeder, 1996; Cujec et al.,
1997], and between Tat and the TAK complex
[Herrmann and Rice, 1993, 1995; Yang et al.,
1996; Zhu et al., 1997]. Interestingly, it has
been recently demonstrated that PITALRE (or
Cdk9) is the kinase required for TAK activity
[Zhu et al., 1997].

A possible interpretation of the dynamics of
Tat transactivation of the HIV-1 5" LTR can be
summarized as follows: 1) The Tat protein asso-
ciates with various components of the TFITH
complex in the RNA pol II holoenzyme and in
the preinitiation complex. 2) In parallel the Tat
protein also associates with the TAK complex.
3) The TFIIH complex, possibly in concert with
the Tat protein, triggers promoter clearance
and transcription initiation, during which the
CTD of RNA pol II is partially phosphorylated,
causing the release of the mediator [Svejstrup
et al., 1997], and the detachment of the preini-
tiation complex from other transcription fac-
tors of the promoter [Zawel et al., 1995]. 4) The
TFIIH/Tat complex falls off the elongating RNA
pol II after the first 20-60 nucleotides have
been transcribed. 5) Simultaneous with the dis-
sociation of the TFIIH/Tat complex, the nascent
HIV-1 TAR RNA recruits the TAK/Tat complex,
which hyperphosphorylates the CTD of RNA
pol II, and, consequently, enhances the proces-
sivity of the transcription elongation complex.

The mechanism of Tat-2 transactivation of
the HIV-2 5'-LTR mirrors that of the HIV-1 Tat
protein, with a minor difference. The carboxyl-
terminus of Tat-2 is phosphorylated in vitro
and in vivo by the TAK complex [Dahmus,
1995; Finzi and Siciliano, 1998], while HIV-1
Tat protein is not.

The TAK/Tat Complex

Recent reports indicate that the human TAK
complex corresponds to the Drosophila positive
acting transcription factor P-TEFb [Zhu et al.,
1997; Mancebo et al., 1997]. TAK and P-TEFb
complexes contain a serine/threonine kinase
that phosphorylates the CTD of RNA pol II, a
cyclin partner required for kinase activity, and
a number of subunits that have yet to be identi-
fied [reviewed by Jones, 1997]. The kinase sub-
unit of Drosophila P-TEFb shares 72% identity
at the amino acid level with its human analog,
CDK9 [Grana et al., 1994; Zhu et al., 1997; De
Falco and Giordano, 1998], a CDC2-related ki-
nase [Marshall and Price, 1992; Marshall et
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al., 1996; Grana et al., 1994; De Falco and
Giordano, 1998]. CDK9’s cyclin partner in hu-
man P-TEFDb complexes can be either cyclin T1,
T2a, or T2b (collectively referred to as cyclin T)
[Peng et al., 1998], whereas CDK9 in TAK com-
plexes appears to solely associate with cyclin
T1 [Wei et al., 1998; Yang et al., 1997; Zhu et al.,
1997]. The exact dynamics of the interaction
between the Tat protein and the TAK complex
are currently under investigation. In vitro data
show an electrophoretic profile of the TAK activ-
ity complex with an apparent molecular weight
of 110 kd [Yang et al., 1996], which probably
consists of CDK9 and cyclin T1. So far, there is
no evidence for a direct association between
CDK9 and the Tat protein. Instead, it appears
that cyclin T1 specifically binds the Tat activa-
tion domain, which is required to enhance the
binding affinity of Tat to the HIV-1 TAR RNA
[Wei et al., 1998]. Thus, the recruitment of
CDKS9 to HIV-1 TAR RNA occurs through cyclin
T1.

Cyclins and cyclin dependent kinases (CDKs)
were originally identified as critical regulators
of the cell cycle [for review see Morgan, 1997].

Cyclins are the activating subunit for CDKs
and were originally named for their cyclical
expression during the cell cycle; only during
specific phases of the cell cycle would various
cyclins be present and only then would their
CDK partners be active. Therefore, the activity
of CDK/cyclin complexes is typically dependent
on the cell cycle stage. These CDK/cyclin com-
plexes phosphorylate, and thereby regulate, pro-
teins crucial to cell cycle progression. However,
other CDK/cyclin complexes, such as CDK7/
cyclin H and CDKS8/cyclin C, are regulators of
transcription. In turn, the activity of this sub-
group of kinases is not modulated during the
cell cycle. To date, all the CDK complexes in-
volved in transcription are able to phosphory-
late the CTD of RNA polymerase II in vitro. The
CDK9/cyclin T complex falls into this transcrip-
tion regulatory group of CDKs; its activity does
not vary during the course of the cell cycle and
it phosphorylates the CTD of RNA polymerase
II. Figure 3 shows the functions of CDK9 in the
biology of the cell. Phosphorylation of the CTD
by CDK9/cyclin T complexes appears to enable
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Fig. 3. Functions of CDK9 in the biology of the cell. Reprinted with permission of Wiley-Liss, Inc., a division of John

Wiley & Sons, Inc. [De Falco and Giordano, 1998].
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RNA polymerase II to enter productive elonga-
tion by counteracting negative factors [Mar-
shall et al., 1996]. It is proposed that this is the
mechanism by which Tat and the TAK complex
stimulate gene expression from the HIV LTR
[Jones and Peterlin, 1994].

Many other lines of investigation underlie
the crucial role of the TAK complex in the Tat
transactivation pathway. For instance, it is of
great interest that the expression of human
cyclin T1 allows for Tat transactivation of the
HIV-1 5'-LTR in murine cells, which normally
are not permissive for Tat-mediated transacti-
vation via TAR RNA [Wei et al., 1998]. This
finding might have implications for the develop-
ment of appropriate transgenic murine models
susceptible to HIV-1 infection, which would
greatly facilitate the study of in vivo viral trans-
mission, and the in vivo analysis of novel inhibi-
tors of viral replication. A recent study has
identified the human cyclin T1 binding region
to the Tat protein and to HIV-1 TAR RNA in the
first 281 amino acid residues [Fujinaga et al.,
1999]. Interestingly, the mouse cyclin T1 has a
cysteine to tyrosine substitution at position 261
[Fujinaga et al., 1999; Garber et al., 1998],
which seems to be the cause of the weak bind-
ing affinity to the Tat protein, and of the inabil-
ity of mouse cyclin T1 to mediate the interac-
tion of Tat with HIV-1 TAR RNA [Fujinaga et
al., 1999; Wei et al., 1998]. In fact, if the tyro-
sine residue at position 261 is changed to a
cysteine residue, mouse cyclin T'1 becomes func-
tional in the context of the HIV-1 TAR-depen-
dent Tat transactivation pathway [Fujinaga et
al., 1999]. Conversely, if the cysteine residue at
position 261 of human cyclin T1 is changed to a
tyrosine residue, the mutated human cyclin T1
behaves like the wild type mouse cyclin T1,
and, therefore, does not permit Tat transactiva-
tion of the HIV-1 LTR [Fujinaga et al., 1999].

Other important findings are the high expres-
sion levels of CDK9 detected in primary human
lymphoid tissues [De Luca et al., 1997], the
ability of Tat mutant proteins to support Tat
transactivation [Herrmann and Price, 1993;
Herrmann et al., 1995; Yang et al., 1996], and
the in vitro and in vivo inhibitory effects of a
kinase inactive CDK9 over the Tat transactiva-
tion of the HIV-1 5-LTR [Gold et al., 1998;
Mancebo et al., 1997], which appear to be cell
type dependent [Gold et al., 1998].

It should be noted that the regulation of TAK
activity relies upon different mechanisms in

various cell lines [Herrmann et al., 1998]. Up-
regulation of TAK activity has been detected in
activated peripheral blood lymphocytes (PBLs)
and in promonocytic cell lines upon stimulation
to differentiate into macrophage-like cells. Spe-
cifically, phorbol ester-activation of PBLs deter-
mines an up-regulation of TAK activity that
correlates with enhanced expression levels of
both CDK9 and cyclin T1. A different pattern of
TAK activity up-regulation has been observed
in phorbol ester-induced promonocytic cells dif-
ferentiating into macrophages. In this case there
is only an increase in cyclin T1 expression lev-
els, whereas CDK9 expression remains con-
stant.

CONCLUSION

In conclusion, the study of TAK activity in
HIV-1 infected PBLs and in cells of monocytic
lineage will undoubtedly provide useful in-
sights into the pathobiology of HIV-1. These
insights may have particular relevance with
regard to the establishment of viral transcrip-
tion latency and in the mechanism of HIV-1
gene expression activation in chronically in-
fected quiescent T cells and promonocytes. In
addition, it will be interesting to determine
whether the TAK/Tat complex is also involved
in the TAR-independent Tat transactivation ob-
served in some CNS-derived cell lines. A better
understanding of TAK/Tat interaction may also
lead to the design of novel antiretroviral inhibi-
tors, and/or to the development of effective gene
therapy approaches for the treatment of pa-
tients with AIDS.
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